Any real matrix \mathbf{A} can be written as the sum of a symmetric \mathbf{R} and a skew－symmetric matrix \mathbf{S} ．
Now A is given below，what are \mathbf{R} and \mathbf{S} ？［86 成大機械 4］

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{rrr}
3 & -4 & -1 \\
6 & 0 & -1 \\
-3 & 13 & -4
\end{array}\right] \\
{[\text { 解 }] \mathbf{A}=\left[\begin{array}{rrr}
3 & -4 & -1 \\
6 & 0 & -1 \\
-3 & 13 & -4
\end{array}\right] \Rightarrow \mathbf{A}^{\mathrm{T}}=\left[\begin{array}{rrr}
3 & 6 & -3 \\
-4 & 0 & 13 \\
-1 & -1 & -4
\end{array}\right]} \\
\mathbf{A}=\frac{\mathbf{A}+\mathbf{A}}{2}+\frac{\mathbf{A}^{\mathrm{T}}-\mathbf{A}^{\mathrm{T}}}{2}=\frac{\mathbf{A}+\mathbf{A}^{\mathrm{T}}}{2}+\frac{\mathbf{A}-\mathbf{A}^{\mathrm{T}}}{2} \\
\mathbf{R}=\frac{\mathbf{A}+\mathbf{A}^{\mathrm{T}}}{2}=\left[\begin{array}{rrr}
3 & 1 & -2 \\
1 & 0 & 6 \\
-2 & 6 & -4
\end{array}\right], \mathbf{S}=\frac{\mathbf{A}-\mathbf{A}^{\mathrm{T}}}{2}=\left[\begin{array}{rrr}
0 & -5 & 1 \\
5 & 0 & -7 \\
-1 & 7 & 0
\end{array}\right]
\end{gathered}
$$

