There is periodic square wave with analytic with represented as $f(x)$ function $f(x)=\left\{\begin{array}{l}-k, \quad \text { when }-\pi<x<0 \\ k, \quad \text { when } 0<x<\pi\end{array}\right.$ ，and $f(x+2 \pi)=f(x)$ ．Please find the Fourier coefficients a_{n}, b_{n} and their series functions to represent the $f(x)$ functions．［103元智機械7］
［解］$f(x)$ 為奇函數 \Rightarrow 設 $f(x)=\sum_{n=1}^{\infty} b_{n} \sin n x$

$$
\begin{aligned}
& b_{n}=\frac{2}{\pi} \int_{0}^{\pi} k \sin n x d x=-\left.\frac{2 k}{n \pi} \cdot \cos n x\right|_{0} ^{\pi}=-\frac{2 k}{n \pi} \cdot(\cos n \pi-1)=-\frac{2 k}{n \pi} \cdot\left[(-1)^{n}-1\right]=\frac{4 k}{(2 n-1) \pi} \\
& f(x)=\frac{4 k}{\pi} \sum_{n=1}^{\infty} \frac{1}{2 n-1} \sin (2 n-1) x
\end{aligned}
$$

